第二次世界大战以后至60年代,主要是发展高强度圆钢和超高强度圆钢的时代,由于航空工业和火箭技术发展的需要,出现了许多高强度钢和超高强度钢新钢种,如沉淀硬化型高强度不锈钢和各种低合金高强度钢等是其代表性的钢种。60年代以后,许多冶金新技术,特别是炉外精炼技术被普遍采用,合金钢开始向高纯度、高精度和超低碳的方向发展,又出现了马氏体时效钢、超纯铁素体不锈钢等新钢种。 国际上使用的有上千个合金钢钢号,数万个规格,合金钢的产量约占钢总产量的10%,是国民经济建设和国防建设大量使用的重要金属材料。 20 世纪 70 年代以来, 世界范围内合金高强度钢的发展进入了一个全新时期, 以控制轧制技术和微合金化的冶金学为基础, 形成了现代低合金高强度钢即微合金化钢的新概念。 进入 80 年代,一个涉及广泛工业领域和专用材料门类的品种开发,借助于冶金工艺技术方面的成就达到了顶峰。在钢的化学成分-工艺-组织-性能的四位一体的关系中, 次突出了钢的组织和微观精细结构的主导地位,也表明低合金钢的基础研究已趋于成熟,以前所未有的新的概念进行合金设计。 [

合金钢圆钢 alloy steel 钢里除铁、碳外,加入其他的合金元素,就叫合金钢。 在普通碳素钢基础上添加适量的一种或多种合金元素而构成的铁碳合金。根据添加元素的不同,并采取适当的加工工艺,可获得高强度、高韧性、耐磨、耐腐蚀、耐低温、耐高温、无磁性等特殊性能。 合金钢已有一百多年的历史了。工业上较多地使用合金钢材大约是在19世纪后半期。 1868年英国人马希特(R.F.Mushet)发明了成分为2.5%Mn-7%W的自硬钢,将切削速度提高到5米/分。 1870年在美国用铬钢(1.5~2.0%Cr)在密西西比河上建造了跨度为 158.5米的大桥;稍后一些工业 改用镍钢(3.5%Ni)建造大跨度的桥梁,或用于修造军舰。 1901年在西欧出现了高碳铬滚动轴承钢。 1910年又发展出了18W-4Cr-1V型的高速工具钢,进一步把切削速度提高到30米/分。 20世纪20年代以后,不锈钢和耐热钢在这段期间问世了。 1920年德国人毛雷尔 (E.Maurer) 发明了18-8型不锈耐酸钢, 1929年在美国出现了Fe-Cr-Al电阻丝。 1939年德国在动力工业开始使用奥氏体耐热钢。

65Mn圆钢,锰提高淬透性,φ12mm的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。 概述 65Mn圆钢用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧。 65Mn钢常用弹簧钢,终热处理为淬火、回火。65Mn钢常用于做机械加工成品,同时也是冷作模具钢的典型材料,其中以圆钢应用领域为广泛。 供货状态及硬度 未热处理,硬度≤285HBS;退火态,硬度≤229HBS。 化学成分 C0.17-0.25、Si0.17-0.37、Mn0.35-0.65、P≤0.035、S≤0.035、Ni≤0.30、Cr≤0.15、Cu≤0.25 该钢强度较高,淬透性较大,脱碳倾向小,但有过热敏感性,易出现淬火裂纹,并有回火脆性。在退火状态下切削加工性尚好,焊接性好,冷变形塑性低,带材可进行一般弯曲成形加工。

对圆钢的焊接性和被切削性的影响 焊接性和被切削性是衡量钢的工艺性能好坏的主要方面。凡能提高淬透性的合金元素均对钢的焊接性不利。因为在焊缝热影响区靠近熔合线一侧冷却时易形成马氏体等硬脆组织,有导致开裂的危险。另一方面,热影响区靠近熔合线处的晶粒因受高热容易粗化,因此,合金钢中含有可使晶粒细化的元素如钛、钒等是有益的。 钢中加入适量的硫、铅等元素可改善钢的被切削性(见易切削钢)。合金钢中的合金元素一般会使钢的硬度增加,因而增高切削抗力,加剧刀具磨损。通过改变钢的基体组织、夹杂物的种类、数量和形状可以影响钢的被切削性。 [6] 对钢的耐蚀性能的影响 铬是不锈耐酸钢和耐热钢的主要合金元素。合金钢中含铬量若达到12%左右,在钢的表面便形成致密的铬的氧化物,使钢在氧化性介质中的耐蚀性发生突变而大大提高。铬、铝、硅等元素,能提高钢的抗氧化性和抗高温气体的腐蚀性能,但过量的铝和硅则会使钢的热塑性变坏。镍主要用来形成和稳定奥氏体组织,使钢获得良好的力学性能、耐蚀性能和工艺性能。钼能使不锈耐酸钢很快钝化,提高对含有氯离子的溶液及其他非氧化性介质的耐蚀能力。钛、铌通常用来固定合金钢中的碳,使它生成稳定的碳化物,以减轻碳对合金钢耐蚀性能的有害作用。铜和磷配合使用时,可提高钢的耐大气腐蚀性能。

点击查看新弘扬特钢有限公司的【产品相册库】以及我们的【产品视频库】